1樓:x證
∫(1/x²+2x+2)dx的不定積分詳細解答如下:
拓展資料:在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。
不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。
根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。
一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
2樓:
你好!詳細解答如圖
懂了請點好評o(∩_∩)o
3樓:體育wo最愛
原式=(1/2)∫[d(x²-2x-1)/(x²-2x-1)]+6∫[1/(x²-2x-1)]dx
=(1/2)∫[d(x²-2x-1)/(x²-2x-1)]+6∫[1/(x-1)²-2]dx……
求不定積分∫(1/x^2+2x+5)dx
4樓:等待楓葉
解:∫1/(x^2+2x+5)dx
=∫1/((x+1)^2+4)dx
令x+1=2tant,則x=2tant-1那麼,∫1/(x^2+2x+5)dx
=∫1/((x+1)^2+4)dx
=∫1/((2tant)^2+4)d(2tant-1)=1/4∫1/(sect)^2d(2tant)=1/2∫dt=t/2+c
又因為x+1=2tant,所以t=arctan((x+1)/2)則∫1/(x^2+2x+5)dx=t/2+c=1/2*arctan((x+1)/2)+c
5樓:寂寞的楓葉
^∫(1/(x^2+2x+5))dx的不定積分為1/2arctan((x+1)/2)+c
解:∫(1/(x^2+2x+5))dx
=∫1/[(x+1)^2+4]dx
=1/4∫1/[((x+1)/2)^2+1]dx
令(x+1)/2=t,則x=2t-1
則1/4∫1/[((x+1)/2)^2+1]dx
=1/4∫1/(t^2+1)d(2t+1)
=1/2∫1/(t^2+1)dt
=1/2arctant+c
把t=(x+1)/2代入,得
∫(1/(x^2+2x+5))dx=1/2arctan((x+1)/2)+c
擴充套件資料:
1、不定積分的公式型別
(1)含a+bx的不定積分
∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c
(2)含x^2±a^2的不定積分
∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c
(3)含ax^2±b的不定積分
∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c
2、不定積分的求解方法
(1)換元積分法
例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c
(2)積分公式法
例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c
(3)分部積分法
例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x
6樓:116貝貝愛
^結果為:(1/2)arctan[(x+1)/2]+ c
解題過程如下:
原式=∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
=∫(1/4)/[ [(x+1)/2]^2+1]dx
=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)arctan[(x+1)/2]+ c
求函式積分的方法:
設f(x)是函式f(x)的一個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。
若f(x)在[a,b]上恆為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。
常用積分公式:
7樓:匿名使用者
∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
=∫(1/4)/[ [(x+1)/2]^2+1]dx=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)arctan[(x+1)/2]+ c上面對你搜到的答案進行了細化。
主要還是利用公式:∫[1/(x^2 +1)]dx=arctan(x) +c,本題中配方後,後面出現4,不是1,因此要通過變形,構造成滿足公式的形式。你搜到的答案倒數第二步寫得不清楚,所以難以理解。
8樓:匿名使用者
^把(x+1)做為一個整體 即令x+1=t∫1/[(x+1)^2+2^2]d(x+1)=∫1/(t^2+2^2)dt
=1/2∫1/[t/2)^2+1]d(t/2)=(1/2)arctan(t/2)+c
代回t=x+1
=(1/2)arctan[(x+1)/2]+c
9樓:
^∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
分子分母同除以4
=∫(1/4)/[(x/2+1/2)^2+1]dx=(1/4)*2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)
=1/2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)=1/2arctan[(x+1)/2]+c明白?可繼續問.
附:arctanx'=1/(1+x^2)
10樓:笑年
=∫1/[(x+1)^2+2^2]d(x+1)=∫1/2^2d(x+1) 在分母把2^2提出來=1/4∫1/d(x+1)
=1/2∫1/d(x+1)/2
=(1/2)arctan[(x+1)/2]+c ( 有公式 (arctanx)'=1/(x^2+1) )
11樓:帥哥靚姐
∫1/(x²+2x+5)dx
=∫1/[(x+1)²+4]dx
=∫1/[(x+1)²+2²]d(x+1)=∫(1/4)/([(x+1)/2]²+1)=(1/2)∫d[(x+1)/2]/([(x+1)/2]²+1)=(1/2)arctan[(x+1)/2]+c
12樓:匿名使用者
第二步就配平方,第三步換元,
∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + c
13樓:匿名使用者
微分裡面需要湊成d(x+1)/2
求不定積分∫(1/x^2+2x+5)dx,要過程 謝謝
14樓:匿名使用者
∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
=∫1/[(x+1)^2+2^2]d(x+1)=(1/2)arctan[(x+1)/2]+c
求不定積分∫x/(x^2+2x+2)dx
15樓:匿名使用者
解∫x/(x²+2x+2)dx
=1/2∫(2x+2-2)/(x²+2x+2)dx=1/2∫(2x+2)/(x²+2x+2)dx-∫1/(x²+2x+2)dx
=1/2∫1/(x²+2x+2)d(x²+2x+2)-∫1/[(x+1)²+1]dx
=1/2∫1/udu-∫1/[(x+1)²+1]d(x+1)=1/2ln|u|-∫1/(u²+1)du=1/2ln(x²+2x+2)-acrtanu+c=1/2ln(x²+2x+2)-arctan(x+1)+c
16樓:匿名使用者
答:∫[x/(x^2+2x+2)]dx
=∫ dx
=∫d(x+1) - ∫ d(x+1)
=(1/2)∫ d[(x+1)²+1] - ∫ d(x+1)=(1/2) ln [(x+1)²+1] -arctan(x+1)+c
= ln√(x²+2x+2) -arctan(x+1)+c
不定積分x 2 x 2 3x 2 dx
原式 不定積分 x 2 x 2 3x 2 dx 不定積分 x 2 3x 2 3x 2 x 2 3x 2 dx 不定積分1dx 不定積分 3 x 1 1 x 2 x 1 dx x 不定積分3 x 2 dx 不定積分1 x 2 x 1 dx x 3ln x 2 ln x 2 x 1 c x ln x 2...
x 31 x 2 dx,求 x 3 1 x 2 dx的不定積分
1 3 1 x 2 3 2 1 x 2 c 解題過程如下 x 3 1 x 2 dx x 2 x 1 x 2 dx 1 2 x 2 1 x 2 dx 2 令 1 x 2 t,則x 2 1 t 2,dx 2 d 1 t 2 2tdt 則原式可化為 t 2 1 dt 1 3t 3 t c 1 3 1 x ...
求不定積分x 2(x 2 2 x 3)dx
x 2 x 2x 3 dx 1 2 2x 2 2 2 x 2x 3 dx 1 2 2x 2 x 2x 3 dx 3 dx x 2x 3 1 2 d x 2x 3 x 2x 3 3 dx x 1 2 1 2 ln x 2x 3 3 2 arctan x 1 2 c 對的,定積分的基本定義。0 cos ...