1樓:墨汁遊戲
因為y關於t的表示式就是y(t)=a(1-cost),直接代入即可。
在於y(x),就把x代入了,但是注意題中只分別給出了y,x關於t得表示式,並沒有給出y和x的關係,換句話說y(x)的表示式是未知的,所以不能像那麼做。如果能得到y(x)表示式,那麼那樣做也可以得到同樣的結果。
2樓:匿名使用者
因為y關於t的表示式就是y(t)=a(1-cost),直接代入即可。我想你的疑惑在於y(x),就把x代入了,但是注意題中只分別給出了y,x關於t得表示式,並沒有給出y和x的關係,換句話說y(x)的表示式是未知的,所以不能像你那麼做。不過,如果你能得到y(x)表示式,那麼那樣做也可以得到同樣的結果。
3樓:匿名使用者
引用高等數學吧小吧baqktdgt的內容,相當漂亮
看10樓和52樓
邊界為引數方程怎麼做二重積分
4樓:木沉
可以嘗試使用stokes公式把二重積分轉化為邊界上的積分。然後利用邊界的參數列示來求。
積分割槽域邊界為引數方程的二重積分問題
5樓:ch陳先生
因為y關於t的表示式就是y(t)=a(1-cost),直接代入即可。
二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。
平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。
在空間直角座標系中,二重積分是各部分割槽域上柱體體積的代數和,在xoy平面上方的取正,在xoy平面下方的取負。某些特殊的被積函式f(x,y)的所表示的曲面和d底面所為圍的曲頂柱體的體積公式已知,可以用二重積分的幾何意義的來計算。
6樓:冥王星的悲傷
這是一個擺線公式,要記住影象和幾個點,大致和sin差不多⋯⋯從x變成t要注意本身你令的y(x)裡面的x就是關於t的函式,所以其實是x(t)
7樓:高冷的李白喝了假酒
怎麼覺得今年數二要出這個題。
如何求積分割槽域邊界為引數方程的二重積分比如∫∫dσ
8樓:紫霧廈
此題可以先積y,y的範圍是0→y(x),積完後: ∫[0→2πa] y(x) dx 但是現在這個積分沒法做了,因為y(x)這個函式的具體表示式不清楚,所以這裡要換元,將變數換成 t 才能繼續做。 這個題不要考慮x'=y,這樣做題時會出麻煩,因為這個求導是對 t 求的,...
請教大神,如何求積分割槽域邊界為引數方程的二重積分
9樓:丘冷萱
此題可以先積y,y的範圍是0→y(x),積完後:
∫[0→2πa] y(x) dx
但是現在這個積分沒法做了,因為y(x)這個函式的具體表示式不清楚,所以這裡要換元,將變數換成 t 才能繼續做。
這個題不要考慮x'=y,這樣做題時會出麻煩,因為這個求導是對 t 求的,就算要考慮它,也是換完元后再考慮。
希望可以幫到你,不明白可以追問,如果解決了問題,請點下面的"選為滿意回答"按鈕,謝謝。
引數方程二重積分計算方法
10樓:是火霧啊
以下面一道例題來論述
第一步,把二重積分的內積分先積分,進而把二重積分轉化為定積分。
第二步,將引數方程代入第一步中得到的定積分,即可得到只有t的定積分,然後按定積分的計算方法進行。
一道二重積分求解答(如何用引數方程求解二重積分,未解決!!)
11樓:笪潤達安陽
我提供一個用
引數方程求橢圓
面積的做法。先將橢圓
方程化為b^2(x^2)+a^2(y^2)=(a^2)(b^2)再將x,y按照圓的引數方程帶入
座標系即x=rcos@,y=rsin@,原方程化為r=ab/(b^2cos^2@+a^2sin^2@)^1/20<@<2pie我仔細算過了,這樣子帶入算,用橢圓的引數方程結果計算出來是的橢圓的面積是pieab,但是你的這個
題目,帶入算的話,用引數方程反而麻煩了,我沒有算。。。
檢視原帖》
一道二重積分求解答(如何用引數方程求
12樓:匿名使用者
我提供一個用引數方程求橢圓面積的做法.
先將橢圓方程化為b^2(x^2)+a^2(y^2)=(a^2)(b^2)
再將x,y按照圓的引數方程帶入座標系即x=rcos@,y=rsin@,
原方程化為r=ab/(b^2cos^2@+a^2sin^2@)^1/20
二重積分的計算,二重積分怎麼計算
似紅豆 利用極座標計算二重積分,有公式 f x,y dxdy f rcos rsin rdrd 其中積分割槽域是一樣的。i dx x 2 y 2 1 2 dy x的積分上限是1,下限0 y的積分上限是x,下限是x 積分割槽域d即為直線y x,和直線y x 在區間 0,1 所圍成的面積,轉換為極座標後...
利用二重積分定義求解二重積分的問題
零奕聲校香 利用對稱性。積分割槽域是關於座標軸對稱的。被積函式也時關於座標軸對稱的。在對稱區域內,奇函式的積分為0.常數的積分 常數倍的積分割槽域的面積。就利用這些吧。1 x立方siny dxdy dxdy x立方siny dxdy 前面1項的積分 面積,後面1項的積分 0 dxdy 積分割槽域的面...
二重積分 三重積分 曲線積分 曲面積分的意義都是什麼
珈藍浩博 二重積分 三重積分 曲線積分 曲面積分 lz首先要知道,積分的意義就是求和。舉個物理上的例子,比如要求總電荷,需要知道電荷分佈f r 如果是分佈在一個平面上的,就是二重積分r可以用x,y表示。如果是一個空間分佈,就是三重積分。對於曲線積分就是圍繞一個路徑求和,重新換個例子。比如一條密度不均...