1樓:明鏡止水丶
通項公式:
an=a1+(n-1)d
an=am+(n-m)d
等差數列的前n項和:
sn=[n(a1+an)]/2; sn=na1+[n(n-1)d]/2
等差數列求和公式: 等差數列的和=(首數+尾數)*項數/2;
項數的公式: 等差數列的項數=[(尾數-首數)/公差]+1.
化簡得(n-1)an-1-(n-2)an=a1,這對於任一n均成立當n取n-1時式子變為,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1
得2(n-2)an-1=(n-2)*(an+an-2)當n大於2時得2an-1=an+an-2 顯然證得它是等差數列和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
性質:若 m、n、p、q∈n
①若m+n=p+q,則am+an=ap+aq②若m+n=2q,則am+an=2aq
注意:上述公式中an表示等差數列的第n項。
求和公式
sn=(a1+an)n/2
sn=n(2a1+(n-1)d)/2; d=公差sn=an2+bn; a=d/2,b=a1-(d/2)
2樓:匿名使用者
sn=an²+bn
則公差為2a, 首項為a+b
所以通項公式為 an=(a+b)+2a(n-1)
利用等差數列求和公式sn=n(a1+an)/2證明sn=na1+n(n-1)/2*d
3樓:盤痴柏錢州
因為等差數列的通項
an=a1
+(n-1)d
把上面的式子代入
sn=n(a1+an)
/2化簡整理就得到你要的式子。
(這是課本上的等差數列另一個前n項和公式的推導)。
等差數列問題。一般地,對於等差數列{an},如果a1、d是確定的,前n項和sn=na1+n(n-1)/2*d
4樓:小嬌朋友
首先,等差數列有這樣的性質:
a1 + an = a2 + a(n-1).......
因為:an = ak + (n-k)d,k小於nan - ak = (n-k)d
也就是說在等差數列中,當(n-k)一定時,任何兩項的差都相等這樣可以證明a1 + an = a2 + a(n-1)其還不錯,希望你採納。
5樓:匿名使用者
a(n)=a+(n-1)d,
a(n)=a+(n-1)d=[(n+1)-n]a + [(n-1)n-(n-2)(n-1)]d/2
=(n+1)a + (n-1)nd/2 - [na + (n-2)(n-1)d/2],
a(n+1)=(n+2)a + n(n+1)d/2 - [(n+1)a + (n-1)nd/2],
s(n) = a(1)+a(2)+a(3)+...+a(n-1)+a(n)
=2a+0 - [a+0] + 3a+d - [2a+0] + 4a+3d-[3a+d]+...+na+(n-2)(n-1)d/2-[(n-1)a+(n-3)(n-2)d/2] + (n+1)a + (n-1)nd/2 - [na + (n-2)(n-1)d/2]
=-[a+0] + (n+1)a + (n-1)nd/2
=na + (n-1)nd/2
6樓:_蘇洛
前n項和sn=a1+a2+a3+...+an =a1+a1+d+a1+2d+...+a1+(n-1)d=na1+n(n-1)/2*d
帶入等差數列通項公式an=a1+(n-1)d sn也可以用首項a1與公差d表示 ,即,sn=na1+n(n-1)/2乘d
7樓:昌樂語
sn=(a1+an)/2*n( 這就相當於1+2+3+4+。。。。。。+100=(1+100)/2*(100)
把an換掉得sn=(a1+a1+(n-1)*d)/2*n=a1*n+(n-1)*n*d/2=na1+n(n-1)/2*d
8樓:匿名使用者
an=a1+(n-1)d記住這個,然後在記住sn=n(a1+an)/2 由中倆個式子聯立得到你記不住的那個求和公式了。
sn=n(a1+an)/2這公式帶入等差通項公式怎麼就成了sn=na1+n(n-1)d/2 了,看不懂了,是怎麼代入的,求詳細步驟
9樓:匿名使用者
sn=n(a1+an)/2
an=a1+(n-1)d
所以sn=n[a1+a1+(n-1)d]/2=n[2a1+(n-1)d]/2=na1+n(n-1)d/2
求等差數列公式,等差數列求公差的公式
等差數列公式 an a1 n 1 d,n為正整數 a1為首項,an為第n項的通項公式,d為公差。前n項和公式為 sn na1 n n 1 d 2,n為正整數 sn n a1 an 2,n為正整數 公差d an a1 n 1 n為正整數 若n m p q均為正整數,若m n p q則 存在am an ...
等差數列各數的平方怎麼求和,等差數列各項平方的和怎麼算
你舉的這個例子有公式的 1 2 2 2 3 2 n 2 n n 1 2n 1 6 n 1 3 n 3 n 3 3n 2 3n 1 n 3 3 n 2 3n 1 利用上面這個式子有 2 3 1 3 3 1 2 3 1 1 3 3 2 3 3 2 2 3 2 1 4 3 3 3 3 3 2 3 3 1 ...
關於等差數列所有的公式!要詳細,等差數列的所有公式
烏秀榮倫釵 下角標不會弄,就用大小寫區分了,如公差用d表示,角標用小寫表示d an an 1 n 1是下角標 若a,a,b三個數成等差數列,則a a b 2an a1 n 1 d 若m,n都是正整數,則公差d an am n m 若m,n,p,q都是正整數,則an am ap aq等差數列前n項和公...