1樓:假面
求得出來的,先將cosx成x的冪級數得,
cosx=1-x^2/2!+x^4/4!+...+(-1)^n*x^(2n)/(2n)!+... (1)
令t=x^2,cos(x^2)=cost=1-t^2/2!+t^4/4!+... (2)
將t=x^2代入兒(2)式中,得
cos(x^2)=1-x^4/2!+x^8/4!+...+(-1)^n*x^(4n)/(2n)!+...
這是個關於x的多項式,積分完後就得,
x-x^5/(2!*5)+x^9/(4!*9)+...+(-1)^n*x^(4n+1)/((2n)!*(4n+1))+... (3)
(3)式就是cos(x^2)的不定積分,至於為什麼cosx可以成冪級數,自己去查一下泰勒公式然後套用就得了。
連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
2樓:吉祿學閣
本題x的平方出現在三角函式裡邊,這個不定積分用初等函式表示不出來。
3樓:
這個積分求不出來,不過求導無需求出積分的
4樓:雲瓶好個秋
二分之x加四分之sin2x加c,更多不定積分題主可以多看看書,書上應該有
5樓:桔子的觀察
確定這個平方是加在x的右上角的嗎
怎麼求(cos^2 x)的定積分
6樓:顏代
(cos^2 x)的定積分的求解方法如下。
解:令f(x)=(cosx)^2,f(x)為f(x)的原函式,
那麼f(x)=∫f(x)dx
=∫(cosx)^2dx=∫(1+cos2x)/2dx
=∫1/2dx+1/2∫cos2xdx
=x/2+sin2x/4+c
那麼對於任意區間[a,b]上f(x)的定積分可利用公式
∫(a,b)f(x)dx=f(b)-f(a)進行求解。
即對於任意區間[a,b]上(cos^2 x)的定積分為∫(a,b)(cosx)^2dx=(b-a)/2+(sin2b-sin2a)/4。
擴充套件資料:
1、定積分的性質
若f(x)為f(x)的原函式,則f(x)=∫f(x)dx。那麼∫(a,b)f(x)dx=f(b)-f(a)
(1)a=b時,則∫(a,a)f(x)dx=f(a)-f(a)=0
(2)a≠b時,則∫(a,b)f(x)dx=-∫(b,a)f(x)dx=f(b)-f(a)
(3)∫(a,a)k*f(x)dx=k*∫(a,b)f(x)dx=k*(f(b)-f(a)),(其中k為不為零的常數)
2、不定積分的運演算法則
(1)函式的和(差)的不定積分等於各個函式的不定積分的和(差)。即:
∫[a(x)±b(x)]dx=∫a(x)dx±∫b(x)dx
(2)求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:
∫k*a(x)dx=k*∫a(x)dx
3、不定積分公式:∫1/(x^2)dx=-1/x+c、∫adx=ax+c、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c、∫sinxdx=-cosx+c
7樓:我不是他舅
cos²x=(1+cos2x)/2
所以∫cos²xdx=∫1/2dx+1/2*∫cos2xdx=x/2+1/4*∫cos2xd(2x)
=x/2+1/4*sin2x
=(2x+sin2x)/4
定積分就不加常數c了,你把積分的上下限代入即可
求cos(π/x)/x^2的不定積分
8樓:
∫cos(π/x)/x²dx=-1/π∫cos(π/x)d(π/x)
=-sin(π/x)/π+c
求不定積分x cosxdx,求不定積分 (cosx)的三次方dx。 要求 要有最詳細的過程,不要簡寫
貴淑英逢媼 解答過程為 x 2 cosxdx x 2 dsinx x 2 sinx sinx dx 2 x 2 sinx 2 xsinxdx x 2sinx 2 xd cosx x 2 sinx 2x cosx 2 cosxdx x 2sinx 2x cosx 2sinx c c為任意常數 擴充套件...
cos4不定積分, cosx 4不定積分
語過添請 具體步驟如下 cos x cos x 1 cos2x 2 1 4 1 2cos2x cos 2x 1 4 1 2 cos2x 1 8 1 cos4x 3 8 1 2 cos2x 1 8 cos4x daocos xdx 3 8 1 2 cos2x 1 8 cos4x dx 3 8 x 1 ...
求不定積分cosx(1 sinx)dx
1 1 sinx d sinx 1 1 sinx d 1 sinx ln 1 sinx c 不定積分的公式 1 a dx ax c,a和c都是常數2 x a dx x a 1 a 1 c,其中a為常數且 a 1 3 1 x dx ln x c4 a x dx 1 lna a x c,其中a 0 且 ...