下列方程確定y是x的函式,x y y x,求dy

時間 2021-09-06 13:17:19

1樓:數神

解析:x∧y=y∧x

兩邊取對數得

y*lnx=x*lny

兩端同時對x求導得

dy/dx*lnx+y*1/x=lny+x*1/y*dy/dx移項並整理得

dy/dx=(lny-y/x)/(lnx-x/y)

2樓:吾死在路訊眾血

這是冪指函式,首先兩邊取對數再求導:y.lnx等於x.

lny,所以(dy/dx).lnx加y/x等於lny加(x/y).(dy/dx),然後整理一下可得(dy/dx)的值!

求由方程x³+y³=2所確定的隱函式y=y(x)的導數 跪求詳細解答過程!

3樓:匿名使用者

解題過程如下圖:

隱函式導數的求解一般可以採用以下方法:

方法①:先把隱函式轉化成顯函式,再利用顯函式求導的方法求導;

方法②:隱函式左右兩邊對x求導(但要注意把y看作x的函式);

方法③:利用一階微分形式不變的性質分別對x和y求導,再通過移項求得的值;

方法④:把n元隱函式看作(n+1)元函式,通過多元函式的偏導數的商求得n元隱函式的導數。

舉個例子,若欲求z = f(x,y)的導數,那麼可以將原隱函式通過移項化為f(x,y,z) = 0的形式,然後通過(式中f'y,f'x分別表示y和x對z的偏導數)來求解。

x^y=y^x,求dy/dx,以及二階導數.(用隱函式的求導公式解答) 50

4樓:匿名使用者

ylnx=xlny

y'lnx+y/x=lny+xy'/y

移項,整理得:

dy/dx=(lny-y/x)/(lnx-x/y)y"=[(lny-y/x)'(lnx-x/y)-(lny-y/x)(lnx-x/y)']/(lnx-x/y)²以下略

求由方程e^y+xy-e=0所確定的隱函式的導數dy/dx. 要詳細過程,說明為什麼要那樣求,不夠詳細不給分!

5樓:demon陌

由方程e^y+xy-e=0確定的函式是y=f(x),因此在對方程兩邊對於x求導時,要把y看成是x的函式,這樣就可以得到e^y*y'+y+xy'=0

從而得到y'=-y/(e^y+x)

注:y'=dy/dx

如果方程f(x,y)=0能確定y是x的函式,那麼稱這種方式表示的函式是隱函式。而函式就是指:在某一變化過程中,兩個變數x、y,對於某一範圍內的x的每一個值,y都有確定的值和它對應,y就是x的函式。

這種關係一般用y=f(x)即顯函式來表示。f(x,y)=0即隱函式是相對於顯函式來說的。

6樓:我是一個麻瓜啊

解題過程如下:

由方程e^y+xy-e=0確定的函式是y=f(x),因此在對方程兩邊對於x求導時,要把y看成是x的函式,這樣就可以得到e^y*y'+y+xy'=0

從而得到y'=-y/(e^y+x)

注:y'=dy/dx

擴充套件資料:隱函式導數的求解一般可以採用以下方法:

方法1:先把隱函式轉化成顯函式,再利用顯函式求導的方法求導;

方法2:隱函式左右兩邊對x求導(但要注意把y看作x的函式);

方法3:利用一階微分形式不變的性質分別對x和y求導,再通過移項求得的值;

方法4:把n元隱函式看作(n+1)元函式,通過多元函式的偏導數的商求得n元隱函式的導數。

例題:1、求由方程y²=2px所確定的隱函式y=f(x)的導數。

解: 將方程兩邊同時對x求導,得:

2yy'=2p

解出y'即得

y'=p/y

2、求由方程y=x ln y所確定的隱函式y=f(x)的導數。

解:將方程兩邊同時對x求導,得

y』=ln y+xy' /y

解出y'即得 。

7樓:天使和海洋

求導定義:函式y=f(x)的導數的原始定義為

y'=f'(x)=lim(δ

x→0)|(δy/δx)=lim(δx→0)|δy/lim(δx→0)|δx=dy/dx,

其中δy=f(x+δx)-f(x);

實數c的導數(c)'=0

導數的四則運演算法則:u=u(x),v=v(x);

加減法原則:(u±v)'=u'±v'

證明:(u±v)'=lim(δx→0)|(δ(u±v)/δx)=d(u±v)/dx,

其中δ(u±v)=u(x+δx)±v(x+δx)-u(x)±v(x)

=[u(x+δx)-u(x)]±[v(x+δx)-v(x)]

=δu±δv,

則(u±v)'=lim(δx→0)|(δ(u±v)/δx)

=lim(δx→0)|(δu/δx)±lim(δx→0)|(δv/δx)

=(du/dx)±(dv/dx)

=u'±v'

乘法法則(uv)'=u'v+uv'

證明:則(uv)'=lim(δx→0)|(δ(uv)/δx)=d(uv)/dx,

其中δ(uv)=u(x+δx)v(x+δx)-u(x)v(x)

=[u(x+δx)v(x+δx)-u(x)v(x+δx)]+[u(x)v(x+δx)-u(x)v(x)]

=[u(x+δx)-u(x)]v(x+δx)]+u(x)[v(x+δx)-v(x)]

=δu×v(x+δx)]+u(x)×δv

則(uv)'=lim(δx→0)|[(δu×v(x+δx)]+u(x)×δv)/δx]

=lim(δx→0)|[δu×v(x+δx)/δx]+lim(δx→0)|[u(x)×δv/δx]

=lim(δx→0)|[δu×v(x+δx)/δx]×lim(δx→0)|v(x+δx)+lim(δx→0)|u(x)×lim(δx→0)|[u(x)δv/δx]

=(du/dx)vx+u(x)(dv/dx)

=u'(x)v(x)+u(x)v'(x)

除法法則:(u/v)'=(u'v-uv')/v²

證明:與乘法法則的證法類似,此處略!

複合函式的求導法則:y=f(u)=f(u(x)),u=u(x),則y'=f'(u(x))×u'(x)

簡證:y=f(u)=f(u(x)),u=u(x),

則y'=lim(δx→0)|(δy/δx)

=lim(δx→0)|[(δy/δu)×(δu/δx)]

=lim(δx→0)|(δy/δu)×lim(δx→0)|(δu/δx)

=(dy/du)×(du/dx)

=f'(u(x))×u'(x)

e^y+xy-e=0——原隱函式,其中y=f(x)

兩邊求導得(e^y+xy-e)'=0'

左邊先由求導的加減法原則可知(e^y+xy-e)'=(e^y)'+(xy)'-(e)',

由常數的導數為0可知原隱函式兩邊求導後為:(e^y)'+(xy)'=0

由複合函式的導數可知(e^y)'=e^y×y',其中(e^x)'=e^x;

由求導的乘法法則可知(xy)'=y+xy',

即原隱函式的導數為e^y×y'+y+xy'=0(其中y'=dy/dx)

接下來求函式y的過程就是傳說中的求解微分方程,

這個求解通常都比較難,而且往往是非常難!

8樓:匿名使用者

很簡單啊。

隱函式為f(x,y)=e^y+xy-e

這個隱函式的求導有個公式dy/dx=f(x,y)對x的偏導除以f(x,y)對y的偏導,並加上一個負號。(不會打偏導負號,見諒)即:dy/dx=-fx/fy

dy/dx=--y/(e^y+x)

9樓:匿名使用者

^設 y= f(x)

方程 :

e^(f(x))+xf(x)-e=0

在方程的兩邊對x求導數

e^(f(x)) f '(x)+f(x)+xf '(x)=0 .........①

解出:f ' (x)= -f(x)/[x+e^(f(x))]即 y ' = -y/(x+e^y)...........②這說明:

在.①中把f(x),換成 y ,就是把y 看成 x 的函式來 求導;有

e^y * y'+ y+ xy'=0

10樓:匿名使用者

把方程的兩邊對x求導數

e^y·(dy/dx)+y+x·(dy/dx)=0從而dy/dx=-y/(x+e^y)

希望你能理解

11樓:匿名使用者

看看,你覺得夠詳細嗎?我認為不能在詳細了!

12樓:數學天才

解:由e^y+xy-e=0得e^y+xy=e

等式兩邊取導得e^y*(dy/dx)+y+x(dy/dx).

整理得dy/dx=-y/(e^y+y)

13樓:沉默

對方程兩邊e^y+xy-e=0求導

得e^ydy+xdy+ydx=0(其中dxy=xdy+ydx)

所以dy/dx=-y/(e^y+x)

14樓:使命召喚

由隱函式的求導法則可知,

dy/dx.e^y+y+xdy/dx=0

dy/dx= -y/(x+e^y)

15樓:匿名使用者

一種用偏導.一種把y看成x的函式...老師應該會講用2這種方法求解的...

由方程y^x=x^y所確定的隱函式y=y(x)的導數dy/dx

16樓:匿名使用者

解法一:對數求導法

y^x = x^y

x lny = y lnx,兩邊求導

lny + x/y•dy/dx = lnx•dy/dx + y/x

(x/y - lnx)•dy/dx = y/x - lny

(x - ylnx)/y•dy/dx = (y - xlny)/x

dy/dx = [y(y - xlny)]/[x(x - ylnx)]

解法二:鏈式法則

y^x = x^y

d(y^x)/dy•dy/dx + d(y^x)/dx•dx/dx = d(x^y)/dx•dx/dx + d(x^y)/dy•dy/dx

x•y^(x - 1)•dy/dx + (y^x)ln(y) = y•x^(y - 1) + (x^y)ln(x)•dy/dx

[(x/y)(y^x) - (x^y)ln(x)]•dy/dx = (y/x)(x^y) - (y^x)ln(y)

dy/dx = [(y/x)(x^y) - (y^x)ln(y)]/[(x/y)(y^x) - (x^y)ln(x)]

= y•[x(y^x)ln(y) - y(x^y)] /

17樓:我不是他舅

取對數xlny=ylnx

求導lny+x*1/y*y'=y'*lnx+y*1/x(x/y-lnx)y'=y/x-lny

所以dy/dx=(y/x-lny)/(x/y-lnx)

求方程所確定的隱函式y=y(x)的導數dy/dx

18樓:匿名使用者

(1)兩邊對x求導得: 4x³-4y³y'=-4y-4xy' 解得:y'=(x³+y)/(y³-x) (2)方程化為:

arctan(y/x)=(1/2)ln(x²+y²) 兩邊對x求導得:(y/x)'/[1+(y/x)²]=(x+yy')/(x²+y²) 即:[(xy'-y)/x²]/

求下列方程所確定的隱函式y y x 的導數y 或微分dy

樓上的求錯了!1,令f x,y e xy ylny cos2x則可由隱函式存在定理求dy dx f x f y f x是f對x的偏導數 把y看成定量,然後對x求導 f y類似 f x ye xy 2sin2x,f y xe xy lny 1 於是dy dx ye xy 2sin2x xe xy ln...

用代入法解下列方程1)3x 4y 16 5x 6y 33(2)4(x y 1)3(1 y) 2 x

1 1 3x 4y 16 兩邊 6得 3 3 18x 24y 96 2 5x 6y 33 兩邊 4得 4 4 20x 24y 132 與 3 相加38x 228 x 6 代入到 1 3 6 4y 16 4y 2 y 1 2 2 1 4 x y 1 3 整理 4x 4y 4 3 3 4x 4y 7 2...

用公式法解下列方程 1 3 x的平方 x

世翠巧 解 1 3 x x 0.5 0 方程兩邊同時乘3x 3x 1.5 0 a 1 b 3 c 1.5 b 4ac 3 4 1 1.5 9 6 15 15 x b 2a 3 15 2 x1 3 15 2 x2 3 15 2 解 1 3 x x 0.5 0 方程兩邊同時乘3x 3x 1.5 0 a ...