x趨於0時,幾類恆等的極限公式

時間 2021-08-30 10:35:56

1樓:小肥肥

當x→0時,

sinx=x

tanx=x

arcsinx=x

arctanx=x

1-cosx=1/2x^2

a^x-1=xlna

e^x-1=x

ln(1+x)=x

擴充套件資料:

推導方法

定名法則

90°的奇數倍+α的三角函式,其絕對值與α三角函式的絕對值互為餘函式。90°的偶數倍+α的三角函式與α的三角函式絕對值相同。也就是「奇餘偶同,奇變偶不變」。

定號法則

將α看做銳角(注意是「看做」),按所得的角的象限,取三角函式的符號。也就是「象限定號,符號看象限」(或為「奇變偶不變,符號看象限」)。

在kπ/2中如果k為偶數時函式名不變,若為奇數時函式名變為相反的函式名。正負號看原函式中α所在象限的正負號。

關於正負號有個口訣;一全正,二正弦,三兩切,四餘弦,即第一象限全部為正,第二象限角,正弦為正,第三象限,正切和餘切為正,第四象限,餘弦為正。

或簡寫為「astc即「all」「sin」「tan+cot」「cos」依次為正。還可簡記為:sin上cos右tan/cot對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan/cot 的正值斜著。

比如:90°+α。定名:

90°是90°的奇數倍,所以應取餘函式;定號:將α看做銳角,那麼90°+α是第二象限角,第二象限角的正弦為正,餘弦為負。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 。

還有一個口訣「縱變橫不變,符號看象限」,例如:sin(90°+α),90°的終邊在縱軸上,所以函式名變為相反的函式名,即cos,所以sin(90°+α)=cosα。

2樓:老黃知識共享

趨於x0的函式極限ε-δ定義(老黃學高數第84講)

函式極限區域性保號性什麼意思

3樓:孤傲一世言

函式極限區域性保號性是指滿足一定條件(例如極限存在或連續)的函式在區域性範圍內函式值的符號保持恆正或恆負的性質。

函式極限是高等數學最基本的概念之一,導數等概念都是在函式極限的定義上完成的。函式極限性質的合理運用。常用的函式極限的性質有函式極限的唯一性、區域性有界性、保序性以及函式極限的運演算法則和複合函式的極限等等。

擴充套件資料

求函式極限的方法:

1、利用函式連續性:

就是直接將趨向值帶入函式自變數中,此時要要求分母不能為0。

2、恆等變形

當分母等於零時,就不能將趨向值直接代入分母,可以通過下面幾個小方法解決:

第一:因式分解,通過約分使分母不會為零。

第二:若分母出現根號,可以配一個因子使根號去除。

第三:以上我所說的解法都是在趨向值是一個固定值的時候進行的,如果趨向於無窮,分子分母可以同時除以自變數的最高次方。(通常會用到這個定理:無窮大的倒數為無窮小)

當然還會有其他的變形方式,需要通過練習來熟練。

3、通過已知極限

特別是兩個重要極限需要牢記。

4、採用洛必達法則求極限

洛必達法則是分式求極限的一種很好的方法,當遇到分式0/0或者∞/∞時可以採用洛必達,其他形式也可以通過變換成此形式。

4樓:demon陌

設函式f(x)在a的極限為a,所謂的函式極限的區域性保號性就是a的符號能保證函式f(x)本身在a 的附近的符號與a相同。這樣就可以用極限很容易證明出函式的不等式。

保號性是指滿足一定條件(例如極限存在或連續)的函式在區域性範圍內函式值的符號保持恆正或恆負的性質。

計算極限limx趨於0上x,下0(t sint

lim 上x,下0 t sint dt e x 4 1 利用羅比達法則 lim x sinx 4x e x 4 1 4lim x sinx x 1 4lim 1 cosx 3x 1 4lim sinx 6x 1 24limsinx x 1 24 1 1 24 暖眸敏 上x,下0 t sint dt ...

當x趨於0時求根號1 sinx 2 1的極限時為什麼sinx

x 0lim sinx x 1 x 2 lim e ln sinx x 1 x 2 e lim ln sinx x 1 x 2 考慮lim ln sinx x 1 x 2 lim ln sinx x x 2 lim ln 1 sinx x 1 x 2利用等價無窮小 ln 1 x x lim sinx...

為什麼tsint趨於0時的極限是

正確的證明方法,是用單位圓畫圖和夾逼定理來做的。問 當x趨於0如何證明x snx的極限為1 可以用夾逼定理來證明 以 0,0 為圓心,畫一個半徑為1的圓 作圖如下,da ob,cb od,x正半軸到直線oc的角度為x 當x 0的時候,如圖 設三角形oda面積為s1,扇形面積odb面積為s2,三角形o...